Source code for neurom.view.view

# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project
# All rights reserved.
#
# This file is part of NeuroM <https://github.com/BlueBrain/NeuroM>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     1. Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#     2. Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#     3. Neither the name of the copyright holder nor the names of
#        its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''visualize morphologies'''
from . import common

import numpy as np
from matplotlib.collections import LineCollection, PolyCollection
from matplotlib.patches import Circle
from mpl_toolkits.mplot3d.art3d import Line3DCollection

from neurom import NeuriteType, geom

from neurom.core import iter_segments
from neurom.core._soma import SomaCylinders
from neurom.core.dataformat import COLS
from neurom.morphmath import segment_radius
from neurom.view._dendrogram import Dendrogram
from neurom._compat import zip


_LINEWIDTH = 1.2
_ALPHA = 0.8
_DIAMETER_SCALE = 1.0
TREE_COLOR = {NeuriteType.basal_dendrite: 'red',
              NeuriteType.apical_dendrite: 'purple',
              NeuriteType.axon: 'blue',
              NeuriteType.soma: 'black',
              NeuriteType.undefined: 'green'}


def _plane2col(plane):
    '''take a string like 'xy', and return the indices from COLS.*'''
    planes = ('xy', 'yx', 'xz', 'zx', 'yz', 'zy')
    assert plane in planes, 'No such plane found! Please select one of: ' + str(planes)
    return (getattr(COLS, plane[0].capitalize()),
            getattr(COLS, plane[1].capitalize()), )


def _get_linewidth(tree, linewidth, diameter_scale):
    '''calculate the desired linewidth based on tree contents

    If diameter_scale exists, it is used to scale the diameter of each of the segments
    in the tree
    If diameter_scale is None, the linewidth is used.
    '''
    if diameter_scale is not None and tree:
        linewidth = [2 * segment_radius(s) * diameter_scale
                     for s in iter_segments(tree)]
    return linewidth


def _get_color(treecolor, tree_type):
    """if treecolor set, it's returned, otherwise tree_type is used to return set colors"""
    if treecolor is not None:
        return treecolor
    else:
        return TREE_COLOR.get(tree_type, 'green')


[docs]def plot_tree(ax, tree, plane='xy', diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH, color=None, alpha=_ALPHA): '''Plots a 2d figure of the tree's segments Args: ax(matplotlib axes): on what to plot tree(neurom.core.Tree or neurom.core.Neurite): plotted tree plane(str): Any pair of 'xyz' diameter_scale(float): Scale factor multiplied with segment diameters before plotting linewidth(float): all segments are plotted with this width, but only if diameter_scale=None color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values Note: If the tree contains one single point the plot will be empty since no segments can be constructed. ''' plane0, plane1 = _plane2col(plane) segs = [((s[0][plane0], s[0][plane1]), (s[1][plane0], s[1][plane1])) for s in iter_segments(tree)] linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth) color = _get_color(color, tree.type) collection = LineCollection(segs, color=color, linewidth=linewidth, alpha=alpha) ax.add_collection(collection)
[docs]def plot_soma(ax, soma, plane='xy', soma_outline=True, linewidth=_LINEWIDTH, color=None, alpha=_ALPHA): '''Generates a 2d figure of the soma. Args: ax(matplotlib axes): on what to plot soma(neurom.core.Soma): plotted soma plane(str): Any pair of 'xyz' diameter_scale(float): Scale factor multiplied with segment diameters before plotting linewidth(float): all segments are plotted with this width, but only if diameter_scale=None color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values ''' plane0, plane1 = _plane2col(plane) color = _get_color(color, tree_type=NeuriteType.soma) if isinstance(soma, SomaCylinders): plane0, plane1 = _plane2col(plane) for start, end in zip(soma.points, soma.points[1:]): common.project_cylinder_onto_2d(ax, (plane0, plane1), start=start[COLS.XYZ], end=end[COLS.XYZ], start_radius=start[COLS.R], end_radius=end[COLS.R], color=color, alpha=alpha) else: if soma_outline: ax.add_artist(Circle(soma.center, soma.radius, color=color, alpha=alpha)) else: plane0, plane1 = _plane2col(plane) points = [(p[plane0], p[plane1]) for p in soma.iter()] if points: points.append(points[0]) # close the loop ax.plot(points, color=color, alpha=alpha, linewidth=linewidth) ax.set_xlabel(plane[0]) ax.set_ylabel(plane[1]) bounding_box = geom.bounding_box(soma) ax.dataLim.update_from_data_xy(np.vstack(([bounding_box[0][plane0], bounding_box[0][plane1]], [bounding_box[1][plane0], bounding_box[1][plane1]])), ignore=False)
[docs]def plot_neuron(ax, nrn, plane='xy', soma_outline=True, diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH, color=None, alpha=_ALPHA): '''Plots a 2D figure of the neuron, that contains a soma and the neurites Args: ax(matplotlib axes): on what to plot nrn(neuron): neuron to be plotted soma_outline(bool): should the soma be drawn as an outline plane(str): Any pair of 'xyz' diameter_scale(float): Scale factor multiplied with segment diameters before plotting linewidth(float): all segments are plotted with this width, but only if diameter_scale=None color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values ''' plot_soma(ax, nrn.soma, plane=plane, soma_outline=soma_outline, linewidth=linewidth, color=color, alpha=alpha) for neurite in nrn.neurites: plot_tree(ax, neurite, plane=plane, diameter_scale=diameter_scale, linewidth=linewidth, color=color, alpha=alpha) ax.set_title(nrn.name) ax.set_xlabel(plane[0]) ax.set_ylabel(plane[1])
def _update_3d_datalim(ax, obj): '''unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually''' min_bounding_box, max_bounding_box = geom.bounding_box(obj) xy_bounds = np.vstack((min_bounding_box[:COLS.Z], max_bounding_box[:COLS.Z])) ax.xy_dataLim.update_from_data_xy(xy_bounds, ignore=False) z_bounds = np.vstack(((min_bounding_box[COLS.Z], min_bounding_box[COLS.Z]), (max_bounding_box[COLS.Z], max_bounding_box[COLS.Z]))) ax.zz_dataLim.update_from_data_xy(z_bounds, ignore=False)
[docs]def plot_tree3d(ax, tree, diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH, color=None, alpha=_ALPHA): '''Generates a figure of the tree in 3d. If the tree contains one single point the plot will be empty \ since no segments can be constructed. Args: ax(matplotlib axes): on what to plot tree(neurom.core.Tree or neurom.core.Neurite): plotted tree diameter_scale(float): Scale factor multiplied with segment diameters before plotting linewidth(float): all segments are plotted with this width, but only if diameter_scale=None color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values ''' segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in iter_segments(tree)] linewidth = _get_linewidth(tree, diameter_scale=diameter_scale, linewidth=linewidth) color = _get_color(color, tree.type), collection = Line3DCollection(segs, color=color, linewidth=linewidth, alpha=alpha) ax.add_collection3d(collection) _update_3d_datalim(ax, tree)
[docs]def plot_soma3d(ax, soma, color=None, alpha=_ALPHA): '''Generates a 3d figure of the soma. Args: ax(matplotlib axes): on what to plot soma(neurom.core.Soma): plotted soma color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values ''' color = _get_color(color, tree_type=NeuriteType.soma) if isinstance(soma, SomaCylinders): for start, end in zip(soma.points, soma.points[1:]): common.plot_cylinder(ax, start=start[COLS.XYZ], end=end[COLS.XYZ], start_radius=start[COLS.R], end_radius=end[COLS.R], color=color, alpha=alpha) else: common.plot_sphere(ax, center=soma.center[COLS.XYZ], radius=soma.radius, color=color, alpha=alpha) # unlike w/ 2d Axes, the dataLim isn't set by collections, so it has to be updated manually _update_3d_datalim(ax, soma)
[docs]def plot_neuron3d(ax, nrn, diameter_scale=_DIAMETER_SCALE, linewidth=_LINEWIDTH, color=None, alpha=_ALPHA): ''' Generates a figure of the neuron, that contains a soma and a list of trees. Args: ax(matplotlib axes): on what to plot nrn(neuron): neuron to be plotted diameter_scale(float): Scale factor multiplied with segment diameters before plotting linewidth(float): all segments are plotted with this width, but only if diameter_scale=None color(str or None): Color of plotted values, None corresponds to default choice alpha(float): Transparency of plotted values ''' plot_soma3d(ax, nrn.soma, color=color, alpha=alpha) for neurite in nrn.neurites: plot_tree3d(ax, neurite, diameter_scale=diameter_scale, linewidth=linewidth, color=color, alpha=alpha) ax.set_title(nrn.name)
def _generate_collection(group, ax, ctype, colors): '''Render rectangle collection''' color = TREE_COLOR[ctype] # generate segment collection collection = PolyCollection(group, closed=False, antialiaseds=True, edgecolors='face', facecolors=color) # add it to the axes ax.add_collection(collection) # dummy plot for the legend if color not in colors: label = str(ctype).replace('NeuriteType.', '').replace('_', ' ').capitalize() ax.plot((0., 0.), (0., 0.), c=color, label=label) colors.add(color) def _render_dendrogram(dnd, ax, displacement): '''Renders dendrogram''' # set of unique colors that reflect the set of types of the neurites colors = set() for n, (indices, ctype) in enumerate(zip(dnd.groups, dnd.types)): # slice rectangles array for the current neurite group = dnd.data[indices[0]:indices[1]] if n > 0: # displace the neurites by half of their maximum x dimension # plus half of the previous neurite's maxmimum x dimension displacement += 0.5 * (dnd.dims[n - 1][0] + dnd.dims[n][0]) # arrange the trees without overlapping with each other group += (displacement, 0.) # create the polygonal collection of the dendrogram # segments _generate_collection(group, ax, ctype, colors) soma_square = dnd.soma if soma_square is not None: _generate_collection((soma_square + (displacement / 2., 0.),), ax, NeuriteType.soma, colors) ax.plot((displacement / 2., displacement), (0., 0.), color='k') ax.plot((0., displacement / 2.), (0., 0.), color='k') return displacement
[docs]def plot_dendrogram(ax, obj, show_diameters=True): '''Dendrogram of `obj` Args: obj: Neuron or tree \ neurom.Neuron, neurom.Tree show_diameters : boolean \ Determines if node diameters will \ be show or not. ''' # create dendrogram and generate rectangle collection dnd = Dendrogram(obj, show_diameters=show_diameters) dnd.generate() # render dendrogram and take into account neurite displacement which # starts as zero. It is important to avoid overlapping of neurites # and to determine tha limits of the figure. _render_dendrogram(dnd, ax, 0.) ax.set_title('Morphology Dendrogram') ax.set_xlabel('micrometers (um)') ax.set_ylabel('micrometers (um)') ax.set_aspect('auto') ax.legend()